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Abstract 

Silurian (Cayugan) forereef slope deposits exposed at Pipe Creek Jr. Quarry, Indiana are characterized by steeply dipping beds (35-45°) 
consisting of grainstone facies with abundant syndepositional abiotic marine cement. In many instances, the early stabilization of steep 
carbonate slopes has been previously attributed to this syndepositional abiotic marine cementation. However, recent studies propose that 
extensive microbial binding can be another significant factor. Microbial binding likely facilitates abiotic cementation by partially stabilizing the 
sediments, and together allows for the development and preservation of steep carbonate slopes. The combination of microbial and abiotic early 
cements may lead to an early reduction in primary porosity and permeability which may adversely affect subsequent reservoir development and 
preservation during burial.  

Comparison of interpreted depositional processes and slope geometry in the Silurian example to those described in subsurface examples 
including the supergiant Tengiz Field in Kazakhstan and the modern from Tongue of the Ocean in the Bahamas, shows similarity in terms of 
slope declivity, bed geometry, and the apparent presence of pervasive abiotic marine cements and microbial cements. The aim of this study is 
to quantify the contribution of microbial binding to the stabilization and potential reservoir modification in the Silurian forereef slope deposits 
exposed at Pipe Creek Jr. Quarry and compare with the subsurface Silurian reefs of the Michigan Basin.  

Initial petrographic analysis reveals an abundance of syndepositional abiotic marine cements with varying morphologies as well as 
microfabrics indicative of early microbial binding such as asymmetric micritic crusts, trapping and binding structures and dense clotted micritic 
masses. Anticipated results with further analysis will provide insight into early reduction of porosity and permeability due to early abiotic 
marine cementation and microbial binding, identify if microbial binding precedes abiotic marine cements and provides a suitable substrate for 
later abiotic marine cementation, help to explain the early lithification and evolution of carbonate slopes, and further develop the fundamentals 
of sedimentology and diagenesis of Silurian (Niagaran) reefs in and around the Michigan Basin. 
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• Hand Sample Analysis (n=33) 

• Thin Section Petrography (n=113)

• Cathodoluminescence Microscopy (CL) (n=5)

• Polished samples using a JEOL IB-19500CP cross 
section polisher (n=11)

scanning electron microscope (ESEM) (n=11)
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Results: East Pit

Results: South Pit
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Key Points and Implications
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• Photomicrographs of dense micrite in samples collected from the East Pit of the Pipe Creek 
Jr. Quarry: 
A) Dense micrite matrix (MC; white arrow) connecting crinoid grains (CR). Syndepositional radiaxial 

B)

arrow).

• SEM images of ion-milled samples of the forereef slope deposits from the East Pit: 
A) 

B) Fossilized mucus-like EPS (FEPS; yellow arrow) lining remaining porosity . This FEPS contains 
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• SEM images of ion-milled samples of the 
forereef slope deposits from the South Pit: 
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 cements that are typically found along windward margins of reefs.  

primary interparticle porosity. The 


